

電源事典

5章

NSP(ノンストップ電源)

5-2-1 原理および特徴

Nipron Co., Ltd.

5 2 Nipron 製 NSP

5 2 1 原理および特徴

ノンストップ電源は、完全に絶縁されたAC・DCの2つのゲート(入力)と、2つのエンジン(コンバータ)を持ち、1つの高周波トランスに、AC・DCの2つの入力を同時に行う2ゲート・2エンジン(並列コンバータ)方式を採用しています。

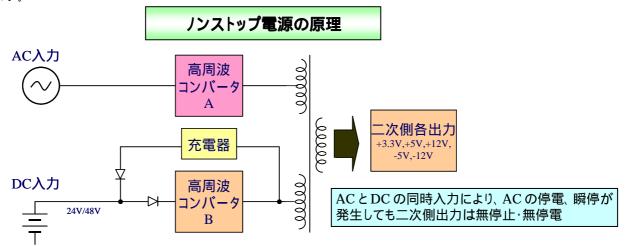


図 5.2 ノンストップ電源原理図

通常時はAC側から電力が供給されますが、ACの入力が低下あるいは停止(停電)した場合は、これを補完する形でDC側から電力が供給されます。したがって、二次側出力は無停止、無瞬断環境が提供され、コンピュータシステムに全くダメージを与えることなく、継続的な運用が保証できます。

これを水の流れにたとえると、ACのタンク、DCのタンクがあり、常に圧力の高いタンクから水が供給されることにより、二次側は常に一定の水位に保たれるという原理です。

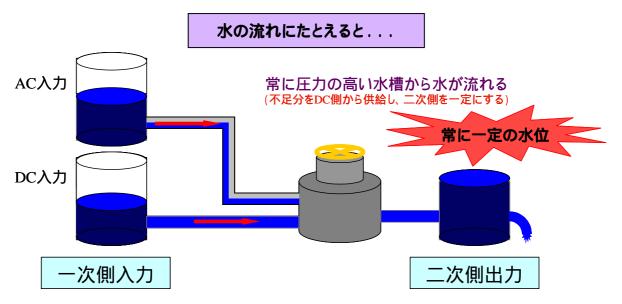


図 5.3 水の流れに例えると

従来方式(直列コンバータ方式)との比較

直流出力のDCUPSは従来、直列コンバータ方式が主流でしたが、充電部とコンバータ部が直列に接続されているため効率が悪く、サイズも大きくなるという欠点があります。ノンストップ電源は、並列コンバータ方式により、AC入力とDC入力が1つのトランスによって結合されているので、高効率・小型化を実現しました。

表 5.1 従来方式との比較

1次 J.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	従来型無停電方式(直列コンバータ方式)	Nipron ノンストップ方式(並列コンバータ方式)			
比較項目	A C/D C コンバータ1 D C/D C コンバータ1	交流側 コンバータ 交流入力 充電器 バッテリー側 コンバータ T バッテリー			
効率	直列構成のため 50% ~ 60%	並列方式であるため 70%~80%と極めて高い			
サイズ	並列方式に比べて大きい、高い 直列方式に比べて、効率が良くなる分 20%前後人				
価格	くなり、安価になる				
EMI ノイズ	前段のスイッチング電源(充電部)と、後段の	交流入力側コンバータとバッテリー側コンバータで			
および対策	DC-DC コンバータは、それぞれ異なるスイッチ	は、1 つの PWM 定電圧コントローラから、全く同期し			
他の機器	ング周波数を持っているためトータルなノイズ成	たスイッチング周波数で運転されており、また充電			
への障害	分が大きい。 器のレギュレータもスイッチングパルスの ON パル				
	また、2 つの異なる基本周波数成分を持つ為	内を位相制御する方式であり、1 つの周波数方式を			
	EMI対策が難しくノイズフィルターが大きくなる。	採用しているため EMI ノイズも少なく、対策もやり易			
		い。通信機器用電源システムとしては、特にこの一			
		周波数方式が望まれ適している。			
コンバータ	直列的に単独で動作するスイッチングコンバー 1 つの PWM コントローラで、2 つのコンバータを同期				
事故に対す	タで構成されているため、いずれか一方のコンさせて、並列運転しているため、万一いずれか一				
る信頼性	バータが事故で破損した時は、全システムがダ	のコンバータが破損しても、もう一方のコンバータが			
	ウンする。	自動的に電力供給を肩代わりし、継続する為安全			
		である。従って、直列方式に比べ信頼性が高い			
力率	一般的にスイッチング電源の力率は、50%~60%	交流入力側にアクティブフィルターを採用している			
高調波電流	と悪く、高調波電流障害も問題となる。 ため、AC 入力力率は 98%以上と高く、高調波電流				
障害	を低減している。				

NSP シリーズの相違点

表 5.2 NSP シリーズの相違点

相違ポイント	DC だけしか入力のない場	DC バックアップ時、リモート	バッテリーチェック
何度がインド			
	合の起動	ON/OFF による電源 OFF を	端子の有無
シリーズ名		行った場合	
NSP2 シリーズ cNSP-250-D4S	起動可能 ACの全〈ない環境での使用が可能 初期状態から DC を入力すると 5VSB が出力されます	5VSB は継続して出力	有り
	(NSP2-250-D2S7 は除く)	(NSP2-250-D2S7 は除く)	
NSP3 シリーズ eNSP シリーズ pNSP シリーズ	起動不可 AC 入力がある場合にのみ起動可能。DCはAC異常時のバックアップ用。 初期状態から DC を入力しても5VSBは出力されません	5VSB を含めて電源 OFF (シャットダウン)する リモート OFF で 5VSB を含め て電源 OFF になるので、外部 UPS の場合に必要な UPS 停 止の操作が不要	無し
NSP7-100-X2S	起動可能	5VSB は継続して出力	オプション扱い
NSP7-100-X2S2	起動不可	5VSB を含めて電源 OFF (シャットダウン)する	オプション扱い
SNSP (スマートNSP)	起動不可	5VSB は継続して出力	有り

バッテリーチェック端子について

バッテリーチェック端子に信号"L"を入力することにより、AC側コンバータを強制的に停止させ、DC運転に切替えることができます。この操作を行うことで、バッテリーの容量や、コネクターの接続異常の有無などを確認することができます。